
nirva systems info@nirva-systems.com nirva-systems.com

Nirva EVENT Service

Document Version: 1.07

http://www.nirva-systems.com/

 Nirva EVENT Service - page 2

Table of Contents

Overview .. 4
Multiple occurrences of a message .. 5
Message inhibition .. 6
Event-based synchronization ... 6
Dispatching messages into actions .. 6

Immediat .. 7
Differed .. 7
External ... 7
Unlock ... 8

Load-balancing message posting ... 8
Tutorial Examples .. 10

Email alert system .. 10
Configuration ... 11
Reference .. 12

Files .. 12
Survey/confirm_clear.xsl .. 12
Survey/confirm_inhibit.xsl ... 12

Procs .. 12
init.pl ... 12
Survey/mail_action.pl ... 13
Survey/survey_task.pl .. 14

Making a user interface wait on an asynchronous process ... 14
Configuration ... 15
Reference .. 16

Files .. 16
Compose/form.xsl ... 16
Compose/make_xslfo.xsl .. 16

Procs .. 16
init.pl ... 16
Compose/post_form.pl ... 16
Compose/compose_action.pl ... 17

Installation .. 20
Configuration ... 21
Reference .. 22

Classes ... 22
Error codes ... 22

EVENT Class .. 22

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 3

CHANNEL Class ... 22
SUBSCRIBER Class ... 23
MESSAGE Class .. 23

Permissions .. 23
Commands ... 24

EVENT class ... 24
NOP .. 24
GET_CHANNEL_DIRECTORY .. 25
SET_CHANNEL_DIRECTORY .. 25

CHANNEL class .. 26
CREATE ... 26
UPDATE ... 27
REMOVE .. 27
ENABLE .. 28
DISABLE ... 28
LIST .. 29
SUBSCRIBE ... 30
UNSUBSCRIBE .. 30
LIST_SUBCRIBERS ... 31

MESSAGE class ... 32
POST .. 32
WAIT ... 33
INHIBIT ... 34
CLEAR .. 34
GET .. 35
DISPATCH .. 36
LIST .. 37

ACTION class.. 38
GET .. 38
COMPLETE .. 39

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 4

Overview

The EVENT service is a NIRVA external service which provides Nirva with a message publishing system
allowing building Event Driven Architectures (EDA). It keeps track of messages (events) sent to a channel
and the subscribers who are to receive the events. The service allows receiving multiple occurrences of the
same messages allowing for escalading mechanisms. It gives the subscribers the possibility to inhibit further
occurrences of a given message.

It has a minimal manipulation of the content of the messages in the form of a string for simple cases. For
more complex situations, the management of the content can easily be externalized.

The EVENT service allows:

� Having multiple channels open to publishing and subscribing to messages

� Processing multiple occurrences of the same messages which allows setting up escalation
mechanisms in case of multiple publications of the same messages (in particular in the case of events
being alerts to be processed).

� Management of multiple subscribers per channel and generation of specific actions for each
subscriber.

� Inhibiting occurrences of a message on a per-subscriber basis.

� Different possibilities of desynchronizing the posting of an event and its processing.

The EVENT service relies on two notions: messages and actions. From the services point of view, messages
are events received by the service and actions are the copies of these messages to be distributed to each of
the subscribers of the channel the message was sent to. Internally, the EVENT service stores the messages
and actions in two queues. A dispatching phase consists in duplicating events in the message queue into
events to be put in the action queue.

The service works in an environment composed of the following acting entities:

� one or more “publishers” posting messages (for example a production system)

� one or more “subscribers” wishing to receive messages sent to a given channel

Publisher Message
Queue POST

Action
Queue

PROCESSDISPATCH

Subscribers

EVENT SERVICE

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 5

� the EVENT service itself

� zero or more “dispatchers” allowing to externalize the dispatching of events

� one or more “processors” which process the pending “actions” the EVENT service has in its queue

The EVENT service only plays the role of receiving events and dispatching them to the appropriate
subscriber queues. How events are generated is left to the publishers and how they are to be processed left
to the processors.

The EVENT service only knows of the subscribers on a by-name basis (i.e. from the EVENT service’s point
of view a subscriber is simply a name). It is the responsibility of the external system processing the actions
generated by the service to know how subscriber names translate to real subscribers. The EVENT service
does not internally know of producers and therefore does not handle this information explicitly. If required the
content part of the EVENT messages may be used to contain information about producers.

Producers post messages to the EVENT service on a given channel by calling the
“EVENT:MESSAGE:POST” command. Posting a message is asynchronous and once the message has
been registered by the EVENT service the call returns.

A processor queries the EVENT service for pending actions to be taken by calling the
“EVENT:ACTION:GET” command. This command returns a table with the information about a set of actions
to be taken and the target subscribers. The processor does the expected action and informs the EVENT
service that the action is complete by calling the “EVENT:ACTION:COMPLETE” command. An action is
generated for each occurrence of a given message and for each subscriber which has not inhibited the
message.

During processing (which is external to the EVENT service), it is the role of the processor to take the correct
action for each subscriber.

Multiple occurrences of a message
In order to handle escalation, the EVENT service allows receiving the same message multiple times.

Each new reception is considered as a new occurrence of the message as long as it has not been cleared.
The EVENT service considers two messages to be the same whenever they have the same id. Messages
are kept in a list of active messages until they are cleared by an “EVENT:MESSAGE:CLEAR”. Each new
reception of an active messages increments the occurrence counter for the message.

It is up to the producer to ensure that two occurrences of a same message have the same message id and
to call the clear command when the message has become obsolete. An optional auto-clear mechanism
clears the message once all the corresponding actions have been processed.

The feature allowing multiple occurrences can, in particular, be used to build an alert system allowing for
alert escalation. In such a case, it is desirable for multiple occurrences of a same alert to “escalade” by, for
example, enlarging the scope of people to be informed of the message (abnormal situation). Once the
situation has returned to normal, the system should be informed of this.

The “email alert system” tutorial gives an example of how such a mechanism may be used.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 6

Message inhibition
In some cases, a specific subscriber of a channel may wish to ignore further occurrences of a given
message. In this case the “EVENT:MESSAGE:INHIBIT” command should be called and the EVENT service
will not generate an action for the given subscriber for any new occurrence of the message. However, once
the message is cleared, the inhibition state is removed.

In the alert case, this mechanism allows for a particular subscriber to ignore further warnings for a same
abnormal situation, for example, once he is aware that it is being taken care of.

The “email alert system” tutorial gives an example of how such a mechanism may be implemented using the
EVENT service.

Event-based synchronization
The EVENT service also allows waiting for an event to occur. This allows implementing event-based
synchronization mechanisms. In this case, the subscriber issues an “EVENT:MESSAGE:WAIT” command
which blocks him until the expected event is received or a timeout occurs.

The “user interface synchronization” tutorial gives an example of how such a mechanism may be
implemented using the EVENT service.

Dispatching messages into actions
The EVENT service works with two queues:

� A “message” queue which stores the incoming messages before they are dispatched into actions.

� An “action” queue which stores actions to be transmitted to each subscriber. There is one copy of the
message for each of the subscribers of the channel excluding subscribers which have inhibited the
message.

Dispatching a message into one action per subscriber can be done at different steps depending on the mode
of the channel. The EVENT service provides four dispatch modes: IMMEDIATE, DIFFERED, EXTERNAL
and UNLOCK.

The usage or not of the message queues depends on the dispatching mode. This is summarized below:

Dispatch Mode Use Message Queue Use Action Queue

IMMEDIATE NO YES

DIFFERED YES YES

EXTERNAL YES YES/NO

UNLOCK NO YES

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 7

When messages are sent to a channel whose dispatching mode is not IMMEDIATE or UNLOCK, the
messages are stored into the “message” queue of the channel. In DIFFERED mode pending messages are
processed when the action queue is empty and a request for new actions has come in. In EXTERNAL mode
a subset of the message queue is retrieved by an external entity in the form of a file which does the
processing of the raw events. It can re-inject the messages into the service by calling the
MESSAGE:DISPATCH command.

For situations in which posting messages should not be blocking for high performance, the dispatch mode
should not be set to IMMEDIATE since the generation of the actions for the incoming message will slow
down the caller. The slowing down is linear in the number of subscribers to the channel.

Immediat

Messages are automatically dispatched into actions as soon as the message is posted via the
MESSAGE:POST command.

Differed

Messages are dispatched when no more actions are left in the action queue and more actions are required
to respond to an ACTION:GET command.

External

Dispatching is externalized. A completely separate entity comes into play to handle the dispatching of
pending messages. This entity calls the MESSAGE:GET to retrieve a series of messages to be processed
and dispatched. For each message it calls the MESSAGE:DISPATCH command

Publisher Message
Queue POST

Action
Queue

Processor GET DISPATCH

Publisher
POST

Action
Queue GET Processor DISPATCH

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 8

Unlock

In this mode, neither of the two queues is used. The processor calls the synchronous command
MESSAGE:WAIT. Upon the reception of a message any waiting processors are unlocked with the
information about the message.

Load-balancing message posting
High volume situations may require that multiple servers may be used to post events while. In this case, the
EVENT service may be deployed on multiple servers. The following schema describes how this is done.

Publisher Message
Queue POST Action

Queue
Processor GET

Dispatcher

GET
DIS

PA
TC

H

Publisher
POST

W
AIT

UNLOCK

Processor

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 9

In this case we have 1 to n MESSAGE servers where the EVENT service is dedicated to receive message
posts and 1 to m ACTION servers where the EVENT service is dedicated to deliver actions. All the event
services in this case are in “EXTERNAL” mode. Dispatching events from the MESSAGE servers to the
ACTION servers is done by implementing listeners which retrieve messages from the MESSAGE servers
and dispatch them to the appropriate ACTION server.

For multiple occurrences and inhibition to work correctly the following constraints should be respected.

� If an occurrence of a message is dispatched on one server, future occurrences of the message must
also be dispatched on that server.

� If subscriptions may be duplicated among different servers, then

y inhibitions should also be duplicated on the same servers

y messages should only be dispatched to one of the servers (otherwise, subscribers will receive
multiple times the same occurrence of the same message)

......
POST

POST

Listener
dispatch

CHANNEL (server M1)

Message
Queue

Action
Queue

CHANNEL (server Mn)

Message
Queue

Action
Queue

Listener
dispatch

GET

GET

CHANNEL (server A1)

Message
Queue

Action
Queue

DISPACTH

DISPACTH

CHANNEL (server Am)

Message
Queue

Action
Queue

DISPACTH

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 10

Tutorial Examples

This chapter presents tutorial use-cases of the different ways the EVENT service may be used.

An application package implementing this tutorial can be found in the Files directory of service.

Email alert system
The EVENT service is particularly well suited to set up an alert system. This tutorial will show how to set up a
simple email alert system.

The system we wish to build in this tutorial is an application checking that a given server is alive and inform
the subscribers by email that the server has come down.

To do this we will build an application consisting of the following components:

� One or more servers to survey. In the tutorial, we will consider the servers are Nirva servers and that
the test to check if a server is up consists in successfully opening an NV_REQUEST

� An event channel “SERVER_DOWN” to which alert messages down should be posted when a server
is found to be down

� For each server, a Nirva task checking every 10 minutes that the server is up and:

y When the server is down, posts a message “<TARGET_SERVER>” to the SERVER_DOWN
channel

y When the server is up, clears the message “<TARGET_SERVER>” on the SERVER_DOWN (note
that sending a complete for a non existing message is simply ignored by the event service).

Task
Server_survey POST GET

SERVER_DOWN Channel

Send emails

Listener
Server
_down_processor

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 11

� A listener which checks for any pending actions to be taken and for each will send an email to the
target subscriber. The subscriber field of the action will be considered as a valid email.

The application will automatically benefit of the inhibition mechanism of the alert service. In the tutorial, this is
simply set up by adding an inhibition link inside the alert email sent to the users. When the user clicks on the
link he will no longer receive further occurrences of the same message until the message is cleared. For
example, if the server being watched is 192.168.1.5 and has come down the survey task will detect this and
post and EVENT on the SERVER_DOWN channel. Since the channel is in IMMEDIATE mode, the message
will be dispatched as one ACTION per subscriber. If joe@example.com is one of the subscribers, an
ACTION for him will eventually be processed by the “server_down_processor” listener which will send him
an email. In our full implementation of this example, the email will contain two links: one to inhibit the
message, one to clear the message. If Joe clicks on the “inhibit” button the next time the task runs and finds
that 192.168.1.5 is still down Joe will not receive this second email. Joe can also click on the “clear”
message indicating that he knows that 192.168.1.5 is back up. If the task finds that 192.168.1.5 is still down
this will generate a new message which all the subscribers will receive again (even if they had inhibited the
message before Joe clicked on clear).

Configuration

To make this example work, you will need the following information:

� The name or IP of a server on which Nirva is installed (TARGET_SERVER in the following)

� The address of an SMTP server not requiring authentication (SMTP_SERVER in the following)

� One or more email addresses to which alert messages are to be sent

Below are the steps to make the tutorial work:

� Install the EVENT service and enable it.

� Configure Nirva to set the SMTP server to SMTP_SERVER. Also fill in the “user” part with the prefix of
the sender of the emails.

� Install the EVENT_TUTORIAL application and start it. Upon starting the application will do a minimal
configuration where possible (see perl:init for details).

� In the EVENT service configuration, enable the SERVER_DOWN channel.

� For each email address add a subscriber to the SERVER_DOWN channel using the email address as
the name of the subscriber.

� In the EVENT_TUTORIAL application, update the “server_survey” task and modify the SERVER
parameter of the task’s procedure so that it is set to <TARGET_SERVER>. For example, in the case
the server to be watched is 192.168.1.5, the task’s procedure should be:

perl:Survey/survey_task[CHANNEL='SERVER_DOWN' SERVER='192.168.1.5']

� Start the survey task

� In the EVENT_TUTORIAL application, start the “server_down_processor” listener.

mailto:joe@example.com
http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 12

Reference

The “Survey” module of the EVENT_TUTORIAL application contains the code for this example. It is
composed of 4 files described below.

Files

Survey/confirm_clear.xsl

This file generates the HTML confirmation obtained whenever a user clicks on the “Clear message” link in
the alert email. (This file is used with the full version of the example packaged in the EVENT_TUTORIAL
application, not the example code given in this document).

Survey/confirm_inhibit.xsl

This file generates the HTML confirmation obtained whenever a user clicks on the “Inhibit message” link in
the alert email. (This file is used with the full version of the example packaged in the EVENT_TUTORIAL
application, not the example code given in this document).

Procs

init.pl

To work correctly, this tutorial requires some configuration. To make this easier a default configuration is set
up by the perl:init procedure called when the application starts. This procedure does the following for this
example:

� Create a SERVER_DOWN channel where messages indicating that a server is down will be posted

� Create a listener to process the actions received on the SERVER_DOWN channel

� Create an example scheduler task checking regularly the availability of a given server. This task
requires further configuration since it expects that the called procedure be passed a SERVER
parameter. The task can be duplicated for each server to be watch.

� Setup the required security for the nvdef user (used by the listener) to give him the right to send
emails.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 13

Survey/mail_action.pl

This file contains Perl code implementing the listener taking the necessary action. In our example, each
action is one email to send to one of the subscribers. We retrieve them one by one and send emails
individually. The code for this procedure is recalled below (for readability, some parts of the code have been
simplified compared to the complete version of the application).

Action listener procedure for the EVENT tutorial

PARAMETERS:

- CHANNEL : Channel to listen to

- FROM : Email to use as the from part of the email

NV::GetParameter("CHANNEL");

my $channel = $NV::RESULT;

my $from = "admin@example.com";

my $server = "localhost:1081";

while(true) {

 # Cleanup the container

 NV::Command("NV_CMD=|CONTAINER:REMOVE|");

 # Quit if session is terminating

 NV::Command("NV_CMD=|SESSION:CHECK_CLOSE_REQUEST|");

 if($NV::RESULT eq "YES") {

 last;

 }

 # Ask for an action to process

 NV::Command("NV_CMD=|EVENT:ACTION:GET| CHANNEL=|$channel|");

 # Quit if no action is to be processed

 NV::Command("NV_CMD=|OBJECT:EXIST| NAME=|ACTION|");

 if($NV::RESULT eq "NO") {

 last;

 }

 NV::Command("NV_CMD=|DEBUG:DISPLAY_OBJECT| NAME=|ACTION|");

 # Get the information about the action as variables

 NV::Command("NV_CMD=|OBJECT:TABLE_GET_ROW| NAME=|ACTION| ROW=|1|");

 NV::Command("NV_CMD=|VARIABLE:GET| NAME=|SUBSCRIBER|");

 my $subscriber = $NV::RESULT;qc

 NV::Command("NV_CMD=|VARIABLE:GET| NAME=|MESSAGE|");

 my $message = $NV::RESULT;

 NV::Command("NV_CMD=|VARIABLE:GET| NAME=|CONTENT|");

 my $content = $NV::RESULT;

 my $body = "Server $message is down !!”;

 # Send the email

 NV::Command("NV_CMD=|MAIL:SEND| AUTH=|NO| SUBJECT=|[EVENT Tutorial ALERT] Server

$message is down (|+|#OCCURRENCE|+|)| FROM=|$from| TO=|$subscriber| BODY=|$body|");

 # Mark the action as finished

 NV::Command("NV_CMD=|EVENT:ACTION:COMPLETE| CHANNEL=|$channel| MESSAGE=|#MESSAGE|

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 14

OCCURRENCE=|#OCCURRENCE| SUBSCRIBER=|#SUBSCRIBER|");

}

Survey/survey_task.pl

This file contains Perl code implementing the task checking whether a given server is up and running. If this
is not the case, it posts and alert message to the specified channel. If the server responds, it clears any
eventual previous warnings.

Example survey task for the EVENT tutorial

PARAMETERS:

- CHANNEL : Channel to listen to

- SERVER : Address of the Nirva server to watch

NV::GetParameter("SERVER");

my $server = $NV::RESULT;

NV::GetParameter("CHANNEL");

my $channel = $NV::RESULT;

NV::SetErrorMode("SCRIPT");

my $ok = (NV::Command("NV_CMD=|REQUEST:OPEN| NAME=|distant| SERVER=|$server|

APPLICATION=|nvdef| USER=|nvdef|") == 1);

if(!$ok) {

 NV::Command("NV_CMD=|EVENT:MESSAGE:POST| CHANNEL=|$channel| MESSAGE=|$server|

CONTENT=|Can’t connect|");

} else {

 NV::Command("NV_CMD=|EVENT:MESSAGE:CLEAR| CHANNEL=|$channel| MESSAGE=|$server|");

}

NV::Command("NV_CMD=|REQUEST:CLOSE| NV_REQUEST=|distant|");

NV::SetErrorMode("Nirva");

Making a user interface wait on an asynchronous process
This example shows how to use the EVENT service in a situation where a user interface requires waiting for
a backend asynchronous process to terminate. In this example the user will submit a form which will
generate XML data to be composed into a PDF file. The schema below illustrates this situation:

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 15

This example is composed of the following components:

� The user via an HTML form sending the a new document generation request

� An synchronous Nirva procedure which will do the following

y Generate a job id for the request (MISC:UNIQ)

y Saving the data it to the storage as a Nirva container serialized in XML

y Posting an message “<job_id>” to the “DOCUMENT_REQUEST” channel with the storage
reference as the content of the message

y Wait for a message “<job_id>” event on the “DOCUMENT_READY” channel which will contain the
storage reference of the PDF file.

y Retrieve the PDF file

� A Nirva listener which processes any pending actions from the DOCUMENT_REQUESTS by:

y Retrieving the data from the storage reference

y Composing the PDF using the data

y Saving the PDF document to the storage

y Posting an event “<job_id>” to the “DOCUMENT_PROCESSED” channel

Configuration

Below are the steps to make the tutorial work:

� Install the EVENT service and enable it.

� Install the EVENT_TUTORIAL application and start it. Upon starting the application will do a minimal
configuration where possible (see perl:init for details).

� Install the XSLFO service and enable it. It is used to compose an example document.

� In the EVENT service configuration, add as many subscribers to the DOCUMENTS_READY as those
which may appear as submitters in the tutorials submission screen. (A default “Example” submitter will
have been added by the applications “perl:init” procedure.

� In the EVENT service configuration, enable the DOCUMENT_REQUEST and DOCUMENT_READY
channels.

POST

WAIT

DOCUMENT_REQUEST

Listener
Compose
_action

DOCUMENT_READY
POST

GET

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 16

� Enable the “composition” listener

Reference

Files

Compose/form.xsl

This XSL file generates a simple HTML form allowing the user to give the composition data. The form calls
the perl:Compose/post_form procedure and retrieves a FILE object named PDF with the composed
document to be displayed.

Compose/make_xslfo.xsl

This XSL stylesheet is an example document model in XSL which transforms the user data into an XSL-FO
document which will be rendered to PDF by the Nirva XSLFO service.

Procs

init.pl

To work correctly, this tutorial example requires some configuration. To make this easier a default
configuration is set up by the perl:init procedure called when the application starts. This procedure does the
following for this example:

� Create the DOCUMENT_REQUEST and DOCUMENT_READY channels

� Create a listener to process the actions received on the DOCUMENT_REQUEST channel

� Create a STORAGE volume and level to store the XML data and composed PDF files.

� Setup the required security for the nvdef user (used by the listener) to give him the right to send
access the storage.

Compose/post_form.pl

This procedure takes care of the processing on the frontend-side. This consists in:

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 17

� Generating a new unique document identifier.

� Retrieving the data submitted by the user

� Saving the data as an XML file to Nirva’s STORAGE

� Posting a message to the DOCUMENT_REQUEST channel (using the document’s id as the message
id and the storage reference as its content)

� Waiting for an action on the DOCUMENT_READY channel indicating that the document has been
composed

� Sending the document back to the user.

Below is given example code for this procedure is:

Submit a composition request and retrieve the document composed asynchronously

Create a document id

NV::Command("NV_CMD=|MISC:UNIQ|");

my $docid = $NV::RESULT;

Create an XML of data and save it to the storage

NV::Command("NV_CMD=|OBJECT:CREATE| REPLACE=|YES| NAME=|document| TYPE=|STRING|

VALUE=|$docid|");

NV::Command("NV_CMD=|OBJECT:CREATE| REPLACE=|YES| NAME=|data| TYPE=|TABLE|

COLUMNS=|requester;client_name;client_address| LINESEP=|\n| ROWSEP='|'

VALUE=|#REQUESTER|+|;|+|#CLIENT_NAME|+|;|+|#CLIENT_ADDRESS| COLSEP=|;|");

NV::Command("NV_CMD=|XML:SET_XML| XMLOBJ=|XML|");

NV::Command("NV_CMD=|STORAGE:DOCUMENT:WRITE| NAME=|EVENT_TUTORIAL| FILE=|XML|");

NV::Command("NV_CMD=|OBJECT:STRING_GET_VALUE| NAME=|REFERENCE|");

my $xml_reference = $NV::RESULT;

Post a document request message

NV::Command("NV_CMD=|EVENT:MESSAGE:POST| CHANNEL=|DOCUMENT_REQUEST| MESSAGE=|$docid|

CONTENT=|$xml_reference|");

Wait for the document to be ready

NV::Command("NV_CMD=|EVENT:MESSAGE:WAIT| CHANNEL=|DOCUMENT_READY| MESSAGE=|$docid|

SUBSCRIBER=|#REQUESTER|");

Retrieve the storage reference from the content column

NV::Command("NV_CMD=|OBJECT:TABLE_GET_CELL_LINE| NAME=|ACTION| COLNAME=|CONTENT|");

my $pdf_reference = $NV::RESULT;

NV::Command("NV_CMD=|STORAGE:DOCUMENT:READ| REF=|$pdf_reference| FLAT=|YES| FILE=|PDF|

REPLACE=|YES|");

Compose/compose_action.pl

This procedure takes care of the backed processing (in our example composing a document). It implements
a listener which on each run processes any pending compositions as long as there is one.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 18

This consists in:

� Fetching a pending action on the DOCUMENT_REQUEST channel.

� Retrieving the XML data from the storage for the target action

� Composing the document (in our example this consists in applying the XSL Compose/make_xslfo.xsl
and calling the Nirva XSLFO service).

� Saving the composed PDF document to the storage

� Posting a DOCUMENT_READY message to the channel

Below is given an example code for this procedure is:

Process any pending actions on the DOCUMENT_REQUEST channel

while(1) {

 # Cleanup the container

 NV::Command("NV_CMD=|CONTAINER:REMOVE|");

 # Quit if session is terminating

 NV::Command("NV_CMD=|SESSION:CHECK_CLOSE_REQUEST|");

 if($NV::RESULT eq "YES") { last; }

 # Ask for an action to process (quit if none : leave them for the next call)

 NV::Command("NV_CMD=|EVENT:ACTION:GET| CHANNEL=|DOCUMENT_REQUEST|");

 NV::Command("NV_CMD=|OBJECT:EXIST| NAME=|ACTION|");

 if($NV::RESULT eq "NO") { last; }

 # Get the information about the action as variables

 NV::Command("NV_CMD=|OBJECT:TABLE_GET_ROW| NAME=|ACTION| ROW=|1|");

 NV::Command("NV_CMD=|VARIABLE:GET| NAME=|SUBSCRIBER|");

 my $subscriber = $NV::RESULT;

 NV::Command("NV_CMD=|VARIABLE:GET| NAME=|MESSAGE|");

 my $message = $NV::RESULT;

 NV::Command("NV_CMD=|VARIABLE:GET| NAME=|CONTENT|");

 my $content = $NV::RESULT;

 # Get the data form the storage (message content is a storage reference)

 NV::Command("NV_CMD=|STORAGE:DOCUMENT:READ| REF=|$content| FLAT=|YES| FILE=|DATA|

REPLACE=|YES|");

 # Compose the document

 NV::Command("NV_CMD=|XML:TRANSFORM| XMLSRC=|DATA| XMLDEST=|XSLFO|

XSL_NAME=|Compose/make_xslfo|");

 NV::Command("NV_CMD=|XSLFO:DOCUMENT:COMPOSE| XSLFO=|XSLFO| OUTPUT=|PDF|

FORMAT=|PDF|");

 # Save the file to the storage

 NV::Command("NV_CMD=|STORAGE:DOCUMENT:WRITE| NAME=|EVENT_TUTORIAL| FILE=|PDF|");

 NV::Command("NV_CMD=|OBJECT:STRING_GET_VALUE| NAME=|REFERENCE|");

 my $pdf_reference = $NV::RESULT;

 # Post an event indicating that the document is ready

 NV::Command("NV_CMD=|EVENT:MESSAGE:POST| CHANNEL=|DOCUMENT_READY| MESSAGE=|$message|

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 19

CONTENT=|$pdf_reference|");

}

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 20

Installation

The EVENT service is delivered as a NIRVA package and can be installed like any NIRVA service directly
from the NIRVA configuration web site. Please see the NIRVA configuration chapter in the NIRVA user’s
guide for further information.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 21

Configuration

The EVENT service configuration allows to:

� List the available channels

� Define new the channels

� Enable/disable the channels

� Delete channels

� List the active messages of a channel

� Clear an active message

� List the subscribers of a channel

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 22

Reference

This chapter gives the complete reference of all the EVENT service commands.

Classes
Here are the available EVENT service classes:

Class Description

EVENT Main class

CHANNEL Class concerning EVENT channels

MESSAGE Class concerning messages

ACTION Class concerning actions to be taken

Error codes

EVENT Class

Value Description

400 Bad or missing parameter

401 Command not allowed from this source

402 Maximum number of sessions reached

404 Unknown command

CHANNEL Class

Value Description

400 Command is not valid for the channel’s mode

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 23

Value Description

404 Channel doesn’t exist

409 Channel already exists

410 Channel is disabled

500 Error accessing the channel

503 The channel is not available

SUBSCRIBER Class

Value Description

404 Subscriber doesn’t exist

409 Subscriber already subscribed to this channel

MESSAGE Class

Value Description

408 Timeout occurred when waiting for message

Permissions

Value Description

EVENT_ADMIN Permission required to modify service parameters

CHANNEL_SUBSCRIBE
Permission required to subscribing and unsubscribing to
channels

CHANNEL_ADMIN Permission required to create or delete channels

CHANNEL_LIST Permission required to list the available channels

MESSAGE_POST Permission required to post and clear messages

MESSAGE_INHIBIT Permission required to inhibit messages

MESSAGE_WAIT Permission required to wait for messages

MESSAGE_DISPATCH Permission required to get and dispatch messages

MESSAGE_LIST Permission required to list messages

ACTION_PROCESS Permission required to get and complete actions

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 24

Commands
For each command, the reference gives the command name, the sources for which the command may be
used, the command description, the eventual command permissions, the parameter list and the eventual list
of objects created by the command.

�
The parameters described in this chapter are command specific parameters. For
general parameters, please refer to the Nirva command syntax chapter in the Nirva
Application Platform documentation.

The available sources are:

� Client for all Nirva client interfaces including Nirva client library (nvc).

� Web for commands from a web browser.

� Procedure for commands from a Nirva procedure.

� Service for commands from service to service

EVENT class

This is the standard service class that provides service scope commands.

NOP

EVENT:EVENT:NOP

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command does nothing but allows to test that the event service is on line and answers correctly.

If the service is not on line, this command returns an error.

Parameters

None

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 25

Permissions

None

GET_CHANNEL_DIRECTORY

EVENT:EVENT: GET_CHANNEL_DIRECTORY

Source Use Input Container Use Output Container

Client

Procedure

Service

No No

Description

This command allows getting the channel directory path.

Permissions

EVENT_ADMIN

Output buffer

Name of the channel directory path

SET_CHANNEL_DIRECTORY

EVENT:EVENT: SET_CHANNEL_DIRECTORY

Source Use Input Container Use Output Container

Client

Procedure

Service

No No

Description

This command sets the channel directory path. When changing this setting the EVENT service all channels
should have been disables. The EVENT service leaves the channel data in the previous directory. If it is
required that this data bee kept, it should be moved to the new location. Otherwise, any pending messages
and actions will be lost.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 26

Permissions

EVENT_ADMIN

Parameters

DIRECTORY Name of the channel directory path

CHANNEL class

CREATE

EVENT:CHANNEL:CREATE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command creates a new channel.

Permissions

CHANNEL_ADMIN

Parameters

CHANNEL Name of the channel to create

DESCRIPTION Human readable description

MODE Dispatch mode which will be used by this channel. The value may be one of:

� IMMEDIATE

� DIFFERED

� EXTERNAL

� UNLOCK

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 27

UPDATE

EVENT:CHANNEL:UPDATE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command updates an existing channel.

Permissions

CHANNEL_ADMIN

Parameters

CHANNEL Name of the channel to update

DESCRIPTION Human readable description

MODE Dispatch mode which will be used by this channel. The value may be one of:

� IMMEDIATE

� DIFFERED

� EXTERNAL

� UNLOCK

REMOVE

EVENT:CHANNEL:REMOVE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command removes channel.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 28

Permissions

CHANNEL_ADMIN

Parameters

CHANNEL Name of the channel to remove

ENABLE

EVENT:CHANNEL:ENABLE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command enables the specified channel.

Permissions

CHANNEL_ADMIN

Parameters

CHANNEL Name of the channel to enable

DISABLE

EVENT:CHANNEL:DISABLE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 29

Description

This command disables the specified channel.

Permissions

CHANNEL_ADMIN

Parameters

CHANNEL Name of the channel to disable

LIST

EVENT:CHANNEL:LIST

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command lists all the available channels.

Permissions

CHANNEL_LIST

Parameters

None

Output

CHANNELS A table containing the following columns:

� Name : Name of the channel

� Description : Description of the channel

� Mode : Dispatching mode of the channel

� Enabled : Whether the channel is enabled or not

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 30

SUBSCRIBE

EVENT:CHANNEL:SUBSCRIBE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command adds a subscriber to the list of subscribers of the channel.

Permissions

CHANNEL_SUBSCRIBE

Parameters

CHANNEL Name of the channel to subscribe to

SUBSCRIBER Identifier of the subscriber to add to this channel

UNSUBSCRIBE

EVENT:CHANNEL:UNSUBSCRIBE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command removes a subscriber from the list of subscribers of the channel.

Permissions

CHANNEL_SUBSCRIBE

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 31

Parameters

CHANNEL Name of the channel to unsubscribe from

SUBSCRIBER Identifier of the subscriber to remove from this channel

LIST_SUBCRIBERS

EVENT:CHANNEL:LIST_SUBSCRIBERS

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No Yes

Description

This command lists all subscribers of this channel.

Permissions

CHANNEL_LIST

Parameters

CHANNEL Name of the channel for which to list the subscribers

Output

SUBSCRIBERS A table containing the following columns:

� NAME : Name of the subscriber

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 32

MESSAGE class

POST

EVENT:MESSAGE:POST

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command receives a new message for the given channel. How it is processed depends on the dispatch
mode of the channel.

If the dispatch mode is “EXTERNAL” or “DIFFERED” the message is stored to the message queue. No
further processing is done. In “DIFFERED” mode the processing of messages will be done when the action
queue is empty and an ACTION:GET request cannot be satisfied. In “EXTERNAL” mode, it is left up to and
external entity to call the “MESSAGE:GET” method to retrieve a set of messages to be processed in a file
and call the “MESSAGE:DISPATCH” for each message found.

When processing an active message, the occurrence of the message is increased. Otherwise a new
message is created with the given id. In both cases a pending action is generated for each subscriber of the
channel. These can then be processed asynchronously and eventually distributed via single calls to the
EVENT:ACTION:GET command.

Permissions

MESSAGE_POST

Parameters

CHANNEL Name of the channel the message should be posted to

MESSAGE This parameter contains the identifier of the message. This identifier must be
the same for every occurrence of the same message.

CONTENT The content of the message.

AUTO_CLEAR Automatically clear the messages once all the actions generated have been
processed. Default is “YES”. When this option is set to “NO” the message
will be kept and the message’s occurrence counters incremented each time
a new post arrives. This until MESSAGE:CLEAR command is called.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 33

WAIT

EVENT:MESSAGE:WAIT

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No Yes

Description

This command allows for event-based synchronization. It blocks the caller until a publisher posts a message
with the specified id.

Permissions

MESSAGE_WAIT

Parameters

CHANNEL Name of the channel the expected message will be posted to

MESSAGE This parameter contains the identifier of the expected message.

SUBSCRIBER Name of the subscriber we are waiting for.

TIMEOUT Time to wait for the message before a timeout occurs (default is 0, i.e. wait
forever).

AUTOCOMPLETE This parameter determines whether the action should be automatically
marked as completed once the expected message has been received.

Output

ACTION A TABLE object is returned with the following columns:

� MESSAGE: Identifier of the message to be processed

� OCCURRENCE: Occurrence of the message

� CONTENT: Content of the message

� SUBSCRIBER : Subscriber of the message

� DATE: Date the message was posted (in the format YYYY-MM-DD
HH:MM:SS)

� DELAY: Delay in seconds between this occurrence of the message
and the previous occurrence. 0 if this is the first occurrence.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 34

INHIBIT

EVENT:MESSAGE:INHIBIT

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command inhibits the future generation of actions for the specified message and subscriber, by marking
the message as inhibited for the specified subscriber. If a message is marked as “inhibited” for a given
subscriber, when the message is dispatched into actions, no new action for the given subscriber will be
generated. A message stays inhibited as long as the message has not been “cleared”. Therefore, this
command is mostly useful in cases where the messages are not cleared automatically.

Permissions

MESSAGE_INHIBIT

Parameters

CHANNEL Name of the channel the message should be posted to

MESSAGE This parameter contains the identifier of the message. This identifier should
the same among all occurrences of the same message.

SUBSCRIBER Subscriber wishing to inhibit the message

CLEAR

EVENT:MESSAGE:CLEAR

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 35

Description

This command allows marking a message as obsolete. It removes the memorized information for the
message from the action queue. The service will also remove any inhibitions for the message. However, the
unprocessed actions for the message will be kept.

Permissions

MESSAGE_POST

Parameters

CHANNEL Name of the channel the message should be posted to

MESSAGE This parameter contains the identifier of the message. This identifier should
the same among all occurrences of the same message.

GET

EVENT:MESSAGE:GET

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

Messages to be processed are returned in the form of a file. Multiple message files may exist depending on
the frequency they are processed and the frequency at which new posts arrive. In order to process the
messages in the same order they have been received, this command returns the oldest message file
available for the given channel first. If a non empty file is available it is returned in a file object named
MESSAGES. If the file is empty the output will not return the MESSAGES object. In both situations any
previously existing MESSAGES object is removed. This way a simple OBJECT:EXIST command allows
checking the presence or absence of a message file.

A message file contains one message per line. Each line contains the message_id, followed by a ‘;’ and
completed by the content of the message. The content of the original message having been escaped by
replacing carriage returns (\r) by the string ‘\r’, line feeds by the string (‘\n’) and backspaces by the string
(‘\\’).

Permissions

MESSAGE_DISPATCH

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 36

Parameters

CHANNEL Name of the channel from which to retrieve messages.

Objects

MESSAGES This file object contains the latest set of messages for the channel if there is
one. No object is returned if there are no more messages to be processed.

DISPATCH

EVENT:MESSAGE:DISPATCH

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

Yes No

Description

This command is only available when the channel’s dispatch mode is “EXTERNAL”. It takes the input
messages and dispatches them to the action queue. If a message active (i.e. the action queue has a
memorized reference to a previous occurrence of the message), the occurrence counter of the message is
increased. Otherwise a new message is created with the given id. In both cases a pending action is
generated for each subscriber of the channel. These can then be processed asynchronously and eventually
distributed via single calls to the EVENT:ACTION:GET command

Permissions

MESSAGE_DISPATCH

Parameters

CHANNEL Name of the channel the message should be posted to

MESSAGE This parameter contains the identifier of the message to be dispatched in
“STRING” mode.

CONTENT The content of the message to be dispatched in “STRING” mode.

AUTO_CLEAR Automatically clear the messages once all the actions generated have been
processed. Default is “YES”. When this option is set to “NO” the message
will be kept and the message’s occurrence counters incremented each time
a new post arrives. This until MESSAGE:CLEAR command is called.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 37

MODE Can either be “FILE” or “STRING”. In “STRING” mode (the default), only one
event is dispatched by using the MESSAGE and CONTENT parameters. In
“FILE” mode, a file object which has the same format as the one obtained by
the “MESSAGE:GET” command is expected. All the messages found in the
file are dispatched.

FILE Name of the file object containing the messages to be dispatched in “FILE”
mode.

LIST

EVENT:MESSAGE:LIST

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No Yes

Description

The action queue keeps a list of the messages which have been dispatched into actions. This command
allows returning this list. The list may be limited to the active messages which have not been inhibited by a
specified subscriber.

Permissions

MESSAGE_LIST

Parameters

CHANNEL Name of the channel the message should be posted to (mandatory)

SUBSCRIBER This optional parameter allows limiting the list to the active messages of the
given subscriber. Otherwise said, specifying a subscriber does not return the
active messages he has inhibited from the returned list.

Objects

MESSAGES This table object contains the list of active messages with the following
columns:

� MESSAGE : Identifier of the message

� CONTENT : Content of the message

� DATE : Date of the last occurrences

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 38

� DELAY : Delay between the last occurrence

� OCCURRENCES : Number of times the messages has occurred.

ACTION class

GET

EVENT:ACTION:GET

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No YES

Description

This command allows retrieving an action to be processed from the action queue. It allows extracting any
available action, any action for a given subscriber, any action for a given message or any action for a given
subscriber and message identifier. It is highly recommended that the way messages are extracted from a
channel be globally consistent (e.g. it should be fixed that all the actions for channel “X” are to be processed
by subscriber).

 If any actions to be processed are available, it returns a table object containing one row with the information
about the action in the different columns. If no action is available, then the ACTION object is not created (if
any action object existed it will have been removed).

Permissions

ACTION_PROCESS

Parameters

CHANNEL Name of the channel to be processed.

SUBSCRIBER Optional target subscriber of the actions to retrieve

MESSAGE Optional message id of the actions to retrieve

MAX_COUNT Maximum number (between 1 and 1000) of actions to be retrieved in one
call (the default is to return 1 action per call)

AUTO_COMPLETE Option indicating that the action should be auto-completed (value of “YES”)
or not (value of “NO”). The default is “YES”. Auto-completing is equivalent to
calling ACTION:COMPLETE just after the ACTION:GET command.

http://www.nirva-systems.com/
http://www.nirva-systems.com/

 Nirva EVENT Service - page 39

Output

ACTION A TABLE object is returned with the following columns:

� MESSAGE: Identifier of the message to be processed

� OCCURRENCE: Occurrence of this message

� CONTENT: Content of the message

� SUBSCRIBER: Subscriber the message should be sent to.

� DATE: Date the message was received (in the format YYYY-MM-DD
HH:MM:SS)

� DELAY: Delay in seconds between this occurrence of the message
and the previous occurrence. 0 if this is the first occurrence.

COMPLETE

EVENT:ACTION:COMPLETE

Source Use Input Container Use Output Container

Client

Web

Procedure

Service

No No

Description

This command indicates that the given message occurrence was processed correctly for the given
subscriber.

Permissions

ACTION_PROCESS

Parameters

CHANNEL Name of the channel the action processed belongs to.

MESSAGE Identifier of the message the action was taken for.

OCCURRENCE The occurrence count of action.

SUBSCRIBER The target subscriber of the action

http://www.nirva-systems.com/
http://www.nirva-systems.com/

	Overview
	Multiple occurrences of a message
	Message inhibition
	Event-based synchronization
	Dispatching messages into actions
	Immediat
	Differed
	External
	Unlock

	Load-balancing message posting

	Tutorial Examples
	Email alert system
	Configuration
	Reference
	Files
	Survey/confirm_clear.xsl
	Survey/confirm_inhibit.xsl

	Procs
	init.pl
	Survey/mail_action.pl
	Survey/survey_task.pl

	Making a user interface wait on an asynchronous process
	Configuration
	Reference
	Files
	Compose/form.xsl
	Compose/make_xslfo.xsl

	Procs
	init.pl
	Compose/post_form.pl
	Compose/compose_action.pl

	Installation
	Configuration
	Reference
	Classes
	Error codes
	EVENT Class
	CHANNEL Class
	SUBSCRIBER Class
	MESSAGE Class

	Permissions
	Commands
	EVENT class
	NOP
	GET_CHANNEL_DIRECTORY
	SET_CHANNEL_DIRECTORY

	CHANNEL class
	CREATE
	UPDATE
	REMOVE
	ENABLE
	DISABLE
	LIST
	SUBSCRIBE
	UNSUBSCRIBE
	LIST_SUBCRIBERS

	MESSAGE class
	POST
	WAIT
	INHIBIT
	CLEAR
	GET
	DISPATCH
	LIST

	ACTION class
	GET
	COMPLETE

