
nirva systems info@nirva-systems.com nirva-systems.com

How-to: Init and exit of an
application

Document version: 1.01

http://www.nirva-systems.com/

How-to: Init and exit of an application - page 2

Every Nirva application Nirva contains two files - init.nvp and exit.nvp – that are triggered when an
application respectively starts and stops. These two Nirva files can be used when specific initialisation or
termination operations are needed, such as:

During the init
 Creation of storage volumes and physical mount points (if they do not exist)

 Retrieval of configuration data from a Nirva registry, a database or a configuration file

 Initialisation of the containers used by the applications

 Creation of named sessions and their context definition.

The init and exit procedures are necessarily in the Nirva native format (nvp extension) but they can obviously
call any other procedure written in perl or java:

; Do all init in a perl procedure

NV_PROC=|perl:init.pl|

These procedures are executed in a special security context giving them all available rights. However,
starting and ending Nirva applications is subject to admin security rights so that only authorised users can
perform these tasks. The same rights will therefore be automatically carried over to the init and exit
procedures.

During the exit
 Housekeeping and cleaning code.

http://www.nirva-systems.com/

How-to: Init and exit of an application - page 3

Usage examples

Named sessions

In init.nvp

The creation of a named session and the definition of its context are usually controlled in the init file of the
application since the session has a life span equal to the life of the application itself. Here is an example
which creates a pool of names sessions for a connection to databases:

init.nvp:

; Just call the perl init procedure

NV_PROC=|perl:init|

init.pl:

Get number of connections from registry

NV::Command("NV_CMD=|REGISTRY:GET| KEY=|parameters.database| ENTRIES=|database|");

NV::Command("NV_CMD=|OBJECT:INDSTRINGLIST_GET_VALUE| NAME=|database|

KEY=|num_connections|");

$DATA_NUM_CONNECTIONS=$NV::RESULT;

Open the named sessions

for($i=1;$i<=$DATA_NUM_CONNECTIONS;$i=$i+1)

{

 NV::Command("NV_MD=|SESSION:CREATE| NAME=|$DBSESSION| OPEN=|database/opendb|

CLOSE=|database/closedb|");

}

The actual init of the named session itself is performed in the "database/opendb” procedure and the
termination code is executed in the “database/closedb” procedure. The two parameters OPEN and CLOSE
for the SESSION:CREATE command allow the definition of these procedures. The default values of these
parameters are respectively “session_open” and “session_close”.

In exit.nvp

In the case of a named session, it is not necessary to execute any termination code in the application init.nvp
as this is generally done in the termination procedure of the named session (“database/closedb” in the
previous example).

http://www.nirva-systems.com/

How-to: Init and exit of an application - page 4

Standard initialisation of an application

In init.nvp

During the initialisation of the application, it is possible to create storage volumes, to create tables and more
generally to create objects that will be needed by the application. For instance, the following Nirva
commands could be needed:

init.nvp:

; Just call the perl init procedure

NV_PROC=|perl:init|

init.pl:

Create some directories if they don't exist

NV::Command("NV_CMD=|APPLICATION:CREATE_DIR| DIR=|Input|");

NV::Command("NV_CMD=|APPLICATION:CREATE_DIR| DIR=|Output|");

NV::Command("NV_CMD=|APPLICATION:CREATE_DIR| DIR=|MyWork|");

Get application directory

NV::Command("NV_CMD=|APPLICATION:GET_DIR|");

$APP_DIR=$NV::RESULT;

Create storage volume if it doesn’t exist

NV_CMD=|STORAGE:VOLUME:CREATE| NAME=|volume1| NV_NO_ERROR=|YES|

; Create storage level if it doesn’t exist

$DIR=$APP_DIR."Volume/RAMSAY/MAIN";

NV_CMD=|STORAGE:LEVEL:CREATE| NAME=|volume1| LNAME=|level1| ERASABLE=|YES| PATH=|$DIR|

NV_NO_ERROR=|YES|

Create scheduled tasks if they are not existing

NV::Command("NV_CMD=|SCHEDULER:TASK_LIST|");

NV::Command("NV_CMD=|OBJECT:TABLE_SET_PRIMARY_COLUMN| NAME=|TASK_LIST| COLNAME=|NAME|");

check mytask task

NV::Command("NV_CMD=|OBJECT:TABLE_GET_CELL_LINE| NAME=|TASK_LIST| PRIMARY=|mytask|

COLNAME=|NAME| NV_NO_ERROR=|YES|");

if($NV::RESULT eq "")

{

 # The task doesn't exist

 # We create it

 NV::Command("NV_CMD=|SCHEDULER:CREATE_TASK| NAME=|mytask| DESCRIPTION=|test|

NV_NO_ERROR=|YES|");

 # First disable it because by default it runs

 NV::Command("NV_CMD=|SCHEDULER:ENABLE_TASK| NAME=|mytask| ENABLE=|NO|

NV_NO_ERROR=|YES|");

 # Set the default parameters

http://www.nirva-systems.com/

How-to: Init and exit of an application - page 5

 NV::Command("NV_CMD=|SCHEDULER:SET_TASK_PARAM| NAME=|mytask| USER=||

PROCT=|perl:input/mytask| PROCI=|session_open| PROCE=|session_close| FREQUENCY=|DAILY|

TIME_SPAN=|86399| REPEAT=|YES| DELAY=|1| OCCURENCES=|0| NV_NO_ERROR=|YES|");

}

The NV_NO_ERROR=|YES| parameter is often used, in this particular case to instruct Nirva not to take into
account the possible error the command could return. For instance, when creating a storage volume, the
command will return an error if the volume already exists. Setting NV_NO_ERROR to "YES" allows the
creation of the volume if it does not exist. Obviously, this error control is very simple and may be sometimes
sufficient. In other cases, one would have to develop a more thorough error control mechanism..

In exit.nvp

exit.nvp:

; Remove all the files and subdirectories of the application MyWork dir

NV_CMD=|APPLICATION:REMOVE_DIR| DIR=|MyWork| SELF=|NO|

http://www.nirva-systems.com/

