
nirva systems info@nirva-systems.com nirva-systems.com

How-to: Web services

Document version: 1.01

http://www.nirva-systems.com/

How-to: Web services - page 2

This document describes, with a simple step by step example, how to use Nirva as a web service provider.
The reader should have some understanding of web services and involved protocols (SOAP and WSDL).

�
Nirva can also be used as a web service client. This is generally done using the
SYSTEM:XML:SEND command and the XSLT internal engine to prepare the SOAP
messages to send and the received responses. This is not described in this docu-
ment.

What is a web service
Web services represent a new architectural paradigm for applications. Web services implement capabilities
that are available to other applications (or even other web services) via industry standard network,
application interfaces and protocols. An application can use the capabilities of a web service by simply
invoking it across a network without having to integrate it. As such, web services represent software building
blocks that are URL addressable.

The capabilities provided by a web service can fall into a variety of categories, including:

� Functions, such as routine for calculating the integral square root of a number.

� Data, such as fetching the quantity of a particular widget a vendor has on hand.

� Business processes, such as accepting an order for a widget, shipping the desired quantity of widgets
and sending an invoice.

Some of these capabilities are difficult or impractical to integrate within third party applications. When such
capabilities are exposed as web services, they can be loosely coupled together, thereby achieving the
benefits of integration without incurring the difficulties thereof.

Web services expose their capabilities to client applications, not their implementation. This allows web
services to be implemented in any language and on any platform and still be compatible with all client
applications.

Each building block (web service) is self-contained. It describes its own capabilities, publishes its own
programming interface and implements its own functionality that is available as a hosted service. The
business logic of the web service runs on a remote machine that is accessible by other applications through
a network. The client application simply invokes the functionality of a web service by sending it messages,
receives return messages from the web service and then uses the result within the application. Since there is
no need to integrate the web service within the client application into a single monolithic block, development
and testing times, maintenance costs, and overall errors are thereby reduced.

Practically, a web service is defined as set of operations, each of them having a well defined structured pair
of input and output messages. The description of the web service operations and messages is done into an

http://www.nirva-systems.com/

How-to: Web services - page 3

XML data flow that respects the WSDL standard and is URL accessible. In this way, a web service client
application knows what the web service operations are and how to invoke them. Some usual language tools
allow automatically constructing web service client stubs from a particular favourite language (e.g. Java
AXIS)

A client application invokes a web service operation by sending to it an XML message compliant with the
SOAP standard. The web service executes the operation and returns the result message also SOAP
formatted.

The protocol used for exchanging messages between a web service and its clients is usually HTTP.

NIRVA implementation of web services
NIRVA allows users creating web services in just few clicks by the way of the NIRVA configuration tool.

A NIRVA web service is defined at system level but is always executed by a NIRVA application. In this way,
a single web service can be used by several NIRVA applications.

A permission associated to each operation of a web service allows NIRVA applications to control web
service security access.

Any NIRVA command puts incoming data into an input container and delivers resulting data from an output
container. A NIRVA web service operation is very similar to a single NIRVA command except that the input
and output message structures are well defined.

A NIRVA web service message is a well defined NIRVA container having sub-containers and NIRVA objects.

A NIRVA web service operation is a NIRVA procedure (written in native, Perl, .Net or Java language) that
takes data from the input container and delivers data to the output container.

A NIRVA web service itself is a collection of web service operations.

A NIRVA web service is accessible to external application like any other web service using HTTP, XML and
SOAP standards but also from a NIRVA procedure or service by way of a dedicated NIRVA command. In
this way, it is possible to integrate the web service business blocks into NIRVA applications or to create web
services that call other web services.

Web service example
The following example creates a web service that takes in input the name of a person (first name and last
name) and returns a welcome message.

Before trying this example, the NIRVA server must be running and the user must have enough rights to
submit the necessary commands. The example runs on the NIRVA default application (NVDEF) and user
(nvdef). Please consult the configuration chapter in order to give all the necessary permissions to the nvdef
user in the NVDEF application. We can suggest to give the nvdef user all permissions.

The example shows nearly all steps in detail. In reality, these steps are carried out in a few seconds.

http://www.nirva-systems.com/

How-to: Web services - page 4

Creating the web service

For creating a web service, first run the configuration tool from your web browser
(http://127.0.0.1:1081/Config/login.htm from the local machine) and use “nvadmin” user with default
password “nirva” if you didn’t change it. Then go in the System/Web service menu. This should display the
following screen:

This is the list of available web services on your NIRVA server. The list should be empty if it is the first time
you work with NIRVA web services.

For creating a web service, press the “Create” button at the top of the screen:

In the Web service name, enter “HELLO” and in the description field, enter “Nirva welcome web service”:
Leave the “Namespace prefix” field blank.

http://127.0.0.1:1081/config/login.htm
http://www.nirva-systems.com/

How-to: Web services - page 5

Press the “Add web service” button in order to create your “HELLO” web service. This returns to the web
service list with the new HELLO web service listed:

Editing the web service

After creating the web service we edit it in order to define its messages and operations. We will simply create
an operation named “Welcome” accepting an input message named “You” that contains two string objects
“firstname” and “lastname” and delivering an output message named “Message” containing a string object
named “Welcome”.

Enter the editing mode (the web service should be stopped for being able to enter editing mode). For that,
click on the icon near the service name. This displays the following screen:

http://www.nirva-systems.com/

How-to: Web services - page 6

This is the list of operations. We’ll create the “Welcome” operation later. Define the messages first by clicking
on the “Messages” button:

This is the list of defined messages for the HELLO web service. We now create a new message by pressing
the “New” button:

http://www.nirva-systems.com/

How-to: Web services - page 7

For the first message, enter “You” as the message name and “Your name” as description and press the “Add
message” button. Repeat the operation for the second message with “Message” as name and “Welcome
message” as description.

The message list should look like this:

We have now the messages but no content. For editing message content: click on the message name. This
enters into the structure of the message content. Let’s do it first for the “You” message:

http://www.nirva-systems.com/

How-to: Web services - page 8

Into this message, create two string objects named respectively “firstname” and “lastname”. For that, press
the “New object” button:

Then press the “Add object” button. Repeat the operation with the second object. The “You” message
structure should look like this:

Do the same with the “Message” message by creating a string object named “welcome”:

http://www.nirva-systems.com/

How-to: Web services - page 9

Now we can come back to the message list by pressing the “Message list” button and switch to the operation
list by clicking the “Operations” button:

Create a new operation called “Welcome” by clicking on the “New” button:

Enter the following information:

� Name is “Welcome”.

� Description is “Delivers a welcome message”.

� Procedure is “welcome”.

� Input message is “You” (chosen from the dropdown list).

� Output message is “Message” (chosen from the dropdown list).

And press the “Add operation” button. The operation list should then look like this:

http://www.nirva-systems.com/

How-to: Web services - page 10

Our web service is now nearly ready. We can get some detailed information about the “Welcome” operation
by clicking on the icon near the operation name:

The WSDL URL (in our example http://localhost:1081/nvdef/hello/NVS?WSDL) is available by clicking the
“Display it” link from this screen. This URL will be useful for your web service client to automatically construct
the messages or code for the web service (e.g. Java AXIS).

Go back to the web service list by clicking on the “Ok” button of the operation list. This also saves the
HELLO web service. Nirva then displays the list of web services:

http://localhost:1081/nvdef/hello/nvs?wsdl
http://www.nirva-systems.com/

How-to: Web services - page 11

Note: the WSDL is also available from this screen clicking on the icon near the web service name.

We have now finished with the web service definition itself but the web service doesn’t do anything. We must
create the procedure that processes input data and delivers output data. For that, we create a file named
“welcome.nvp” (we have defined the procedure name as “welcome” in the web service operation) in the
Nirva/Webservices/HELLO/Procs directory with the following content:

NV_CMD=|OBJECT:STRING_GET_VALUE| NAME=|firstname| NV_VAR=|FirstName|

NV_CMD=|OBJECT:STRING_GET_VALUE| NAME=|lastname| NV_VAR=|LastName|

NV_CMD=|OBJECT:CREATE| NAME=|welcome| TYPE=|STRING|

NV_CMD=|OBJECT:STRING_SET_VALUE| NAME=|welcome| VALUE=|Welcome to NIRVA web services, |

+ |#FirstName| + | | + |#LastName|

Please respect the syntax and put one command on an entire line.

This simple procedure just constructs the welcome message from the given first and last names. In this
example, we use the NIRVA native language, but the procedure can be also written directly in Perl, .Net or
Java language.

Starting the web service

For starting, the web service, click on the icon in the web service status column. The web service is now
ready to run:

http://www.nirva-systems.com/

How-to: Web services - page 12

Running the web service

Testing the web service can be done with any dedicated web service tool on the market or the NIRVA nvcc
tool. The first test shown is done with nvcc. The second tests is done with soapUI.

With nvcc tool

We must first create an input XML file named “welcomein.xml” with the following content:

<?xml version="1.0" encoding="UTF-8" ?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Body>

 <nvs:You xmlns:nvs="http://pierredell:1081/nirva/nvdef/hello">

 <nvs:firstname>John</nvs:firstname>

 <nvs:lastname>SMITH</nvs:lastname>

 </nvs:You>

 </env:Body>

</env:Envelope>

This is the input SOAP message for our hello web service. Please copy this file into the Nirva/Bin directory.

For testing the web service, open a console window, go into the Nirva/Bin directory and type the following
command line:

nvcc -i testwebs.txt HELLO Welcome welcomein.xml welcomeout.xml

This instructs NIRVA to execute the Welcome operation of the HELLO web service with the input data of the
“welcomin.xml”.

NIRVA delivers the output message into the welcomeout.xml file.

After running the command, the resulting welcomeout.xml file looks like this:

http://www.nirva-systems.com/

How-to: Web services - page 13

In fact, the returned message is a SOAP fault message because we forgot to allow the default user of the
default application to use the web service.

For that, we must create a new role to the default user and add the HELLO/Welcome web service
permission to this role (we can also just add the permission to an existing role). Go into the Nirva
configuration tool (http://localhost:1081/Config/login.htm) and login to the default application (do not enter
anything in the Application field of the login screen). Then go into the application security and add a new role
named “webs_exec”:

In this role, display the list of permissions, check the WELCOME permission for the HELLO web service (this
should be at the bottom of the permission screen) and press the update button:

http://localhost:1081/config/login.htm
http://www.nirva-systems.com/

How-to: Web services - page 14

Now give to “nvdef” user the webs_exec role and press the update button:

Nota: the screens may differ on your computer following the security rights you have already set.

Now, everything is OK and we can run again the web service with the command line:

nvcc -i testwebs.txt HELLO Welcome welcomein.xml welcomeout.xml

Now the welcomeout.xml file looks like this:

http://www.nirva-systems.com/

How-to: Web services - page 15

This is now the expected result of our simple HELLO web service.

With SoapUI standard tool

The soapUI is a free tool for testing web services. It can be found on http://www.soapui.org/. We use version
2.0.2 in this documentation.

First start soapUI. This should display the following screen:

Right click on Projects and choose “New WSDL Project”:

Name your project “Hello” and enter the URL of the web service as found in the Nirva configuration tool. If
you run soapUI on the same computer than Nirva, this will be “http://localhost:1081/nvdef/hello/NVS?WSDL”,
otherwise set the correct computer name and port in the URL.

Click “Ok”. This creates your Hello project. Expand the Hello project and double click on “Request 1”. SoapUI
then automatically generates your input soap message:

http://www.soapui.org/
http://localhost:1081/nvdef/hello/nvs?wsdl
http://www.nirva-systems.com/

How-to: Web services - page 16

Change the message by adding your first and last names in the correct places.

Then press the button from the Request 1 window. This sends the input message to Nirva and returns
back the result message:

Deploying the web service

Deploying a web service means creating an installation package on one side and installing the application
package on another side.

For creating the package file for the web service HELLO, go to the web service list in the configuration tool
and click on the “HELLO” web service. This displays the following screen:

http://www.nirva-systems.com/

How-to: Web services - page 17

just click on the icon near the web service name. Then save your package file:

For installing this web service package on the target NIRVA, use the configuration tool of this target NIRVA,
go to the System/Web services menu and press the install button. Then enters the path of your package file
an press the “Install package” button:

http://www.nirva-systems.com/

How-to: Web services - page 18

The web service name is not mandatory since NIRVA is able to get it from the package file itself. Changing
the web service name allows to create a copy of a web service.

After a confirmation message, the HELLO web service is installed on the target NIRVA.

Description file
The web service description file is a text file named “webservice.dsc”. The description file must reside in the
webservice “Files” directory.

The description file is composed of well defined sections. A new section begins with a new line starting with
the ‘[‘ character followed by the section name and terminating with the ‘]’ character.

Each section contains a succession of lines with a meaning depending of the section itself.

The description file can include comments. A comment is a line starting with ‘;’, “//” or “\\”.

Any blank line is ignored.

Here are the description file available sections:

INFO General web service information.

SETTINGS General settings.

Here is an example of a description file for the service “HELLO”:

// hello.dsc : description file

// NIRVA web service

// This file should reside in the NIRVA/Webs/HELLO/Files directory

// This file contains the HELLO NIRVA web service description

// NIRVA tries to read it when loading the web service

// The hello.dsc file should be installed in the web service File director

// This file is not required but is very usefull for NIRVA configuration

http://www.nirva-systems.com/

How-to: Web services - page 19

// INFO section

// The INFO section gives some general web service information on the form

// infoname =info value

// Any new string can be added, removed or modified

[INFO]

WEBSERVICE = HELLO

VERSION = 1.00

DESCRIPTION = HELLO NIRVA web service

COMPANY =

COPYRIGHT =

[SETTINGS]

NSPREFIX =

INFO section

The INFO section gives some general web service information.

There is a single INFO section in the description file.

The section is composed of several entries of the form infoname = infovalue.

The WEBSERVICE entry is the name of the web service. It’s used by Nirva as default web service name
during installation.

SETTINGS section

The SETTINGS section gives some web service information.

There is a single SETTINGS section in the description file.

The section is composed of several entries of the form paramname = paramvalue.

The NSPREFIX section gives the default namespace prefix that will be used in the web service WSDL if not
given, Nirva is using the web service host parameter defined at system level (see config/system
parameters). This parameter is only used at installation time if the web service doesn’t exist. After install the
namespace prefix can be changed directly from the configuration tool.

http://www.nirva-systems.com/

	What is a web service
	NIRVA implementation of web services
	Web service example
	Creating the web service
	Editing the web service
	Starting the web service
	Running the web service
	With nvcc tool
	With SoapUI standard tool

	Deploying the web service

	Description file
	INFO section
	SETTINGS section

